- Practical MongoDB Aggregations
- Credits
- Advert
- Foreword
- Who This Book Is For
- 1. Introduction
- 1.1. Introducing MongoDB Aggregations
- 1.2. History of MongoDB Aggregations
- 1.3. Getting Started
- 1.4. Getting Help
- 2. Guiding Tips & Principles
- 2.1. Embrace Composability For Increased Productivity
- 2.2. Better Alternatives To A Project Stage
- 2.3. Using Explain Plans
- 2.4. Pipeline Performance Considerations
- 2.5. Expressions Explained
- 2.6. Sharding Considerations
- 2.7. Advanced Use Of Expressions For Array Processing
- 3. Aggregations By Example
- 3.1. Foundational Examples
- 3.1.1. Filtered Top Subset
- 3.1.2. Group & Total
- 3.1.3. Unpack Arrays & Group Differently
- 3.1.4. Distinct List Of Values
- 3.2. Joining Data Examples
- 3.2.1. One-to-One Join
- 3.2.2. Multi-Field Join & One-to-Many
- 3.3. Data Types Conversion Examples
- 3.3.1. Strongly-Typed Conversion
- 3.3.2. Convert Incomplete Date Strings
- 3.4. Trend Analysis Examples
- 3.4.1. Faceted Classification
- 3.4.2. Largest Graph Network
- 3.4.3. Incremental Analytics
- 3.5. Securing Data Examples
- 3.5.1. Redacted View
- 3.5.2. Mask Sensitive Fields
- 3.5.3. Role Programmatic Restricted View
- 3.6. Time-Series Examples
- 3.6.1. IoT Power Consumption
- 3.6.2. State Change Boundaries
- 3.7. Array Manipulation Examples
- 3.7.1. Summarising Arrays For First, Last, Min, Max & Average
- 3.7.2. Pivot Array Items By A Key
- 3.7.3. Array Sorting & Percentiles
- 3.7.4. Array Element Grouping
- 3.7.5. Array Fields Joining
- 3.7.6. Comparison Of Two Arrays
- 3.8. Full Text Search Examples
- 3.8.1. Compound Text Search Criteria
- 3.8.2. Facets And Counts Text Search
- 4. Appendices
- 4.1. Appendix: Stages Cheatsheet
- 4.2. Appendix: Stages Cheatsheet Source
- 4.3. Appendix: Create Atlas Search Index
- 4.4. Appendix: Book Version History